pangondian blog's

ora et labora

Kamis, 07 Mei 2009

Diseminasi Perencanaan Teknis Jembatan

Diseminasi Perencanaan Teknis Jembatan dilaksanakan di Batam tanggal 6-8 Mei 2009, yang diselenggarakan oleh subdit Jembatan Direktorat Bina Teknik Ditjen Bina Marga Departrmrn Pekerjaan Umum.
Acara dibuka pada pukul 13.20 WIB oleh Ir.Hery Vaza, M.Engg.Sc selaku Kasubdit Teknik Jembatan mewakili Direktur Bina Teknik Dep.PU.
Peserta Diseminasi terdiri dari lingkungan SNVT P2JJ, SNVT PJJ dab SNVT Preservasi JJ Prov.Kepulauan Riau, Dinas PU Provinsi, Dinas PU Kabupaten/Kota dan beberapa SE di lingkungan SNVT P2JJ Kepri, serta Konsultan di lingkungan SNVT P2JJ Kepri.
Diseminasi ini dimaksudkan sebagai penyampaian informasi mengenai perencanaan jembatan, mulai dari peraturan yang mendukung, NSPM, tata cara perencanaan pondasi, bangunan atas dan bangunan bawah jembatan serta bangunan pelengkap jembatan.
Ini sangat bermanfaat bagi semua peserta , mengingat permasahan yang timbul akibat perencanaan dan pelaksanaan jembatan memerlukan penanganan yang serius setiap pihak terkait.
Untuk permasalahan jembatan kita dapat merujuk pada website subdit Bina Teknik Direktorat Jenderal Bina Marga Departemen Pekerjaan Umum, dengan alamat : www.jembatanindonesia.com

Jumat, 17 April 2009

DEPARTEMEN PU SIAP SERAP DANA STIMULUS

Menteri Pekerjaan Umum Djoko Kirmanto mengatakan Departemen PU melalui berbagai proyeknya siap menyerap dana stimulus sebesar Rp3,6 triliun dari total dana stimulus yang dialokasikan kepada Departemen PU sebesar Rp6,6 triliun. Hal tersebut dikarenakan proyek-proyek Departemen PU yang akan menggunakan dana stimulus merupakan kelanjutan dari proyek sebelumnya yang pada awalnya masih kekurangan pendanaan.

“Dana stimulus untuk PU karena dipakai untuk proyek multiyears kontrak yang kemarin kekurangan uang, jadi tinggal diserap aja karena proyeknya sudah berjalan, terutama proyek jalan dan jembatan. Kontraknya sudah ada jadi tinggal pakai saja. Dari Rp6,6 triliun, sebesar Rp3,6 triliun masuk DIP Departemen PU, sisanya Rp3 triliun masuk DIP-nya Daerah yang dilakukan oleh Satuan Kerja Perangkat Daerah (SKPD)” jelas Menteri PU Djoko Kirmanto usai mengikuti rapat di Gedung Kementrian Perekonomian Jakarta (16/4).

Disamping untuk jalan dan jembatan, dana stimulus Departemen PU juga digunakan untuk penanganan bencana banjir seperti penanganan banjir Bengawan Solo yang dianggarkan sebesar Rp700 miliar.

Menurut Menteri PU, penyerapan dana stimulus harus selesai tahun ini. Dengan bergulirnya proyek-proyek konstruksi yang memang sengaja dirancang dapat menyerap banyak tenaga kerja, efek pengucuran dana stimulus terhadap perekonomian Indonesia dapat dirasakan terutama pengurangan jumlah pengangguran. Total dana stimulus yang dikeluarkan pemerintah adalah Rp12 triliun dimana Rp6,6 triliun dialokasikan kepada Departemen PU. (gt) (http://www.pu.go.id/)

Pusat Komunikasi Publik

160409

KONSTRUKSI LINTAS BARAT BINTAN TERUS DILAKUKAN

Progres pembanguan jalan lintas barat pulau Bintan hingga saat ini telah mencapai 21,5 kilometer dari total panjang 45 kilometer. Konstruksi telah dilakukan sejak tahun 2005 dengan titik awal dari Simpangloban. Sedangkan sisanya sedang dalam tahap pembukaan lahan sampai dengan pembentukan badan jalan.


Kepala Satuan Kerja Non Vertikal Tertentu (SNVT) Pembangunan Jalan dan Jembatan Kepulauan Riau, Suriyatno Untung baru-baru ini di Tanjungpinang mengatakan, pada anngaran tahun ini, lintas barat Pulau Bintan dilaksanakan melalui delapan paket pekerjaan yang terdiri dari tiga paket jalan dan lima paket jembatan dengan dana dari APBN Murni.


Pekerjaan jalan terdiri dari sebuah paket Lintas Barat dengan nilai kontrak sebesar Rp 6 miliar, dengan target efektif jalan 7,175 kilometer. Pekerjaan dilakukan kontraktor pelaksana PT. Amanah Anak Negeri dan konsultan supervisi PT. Aneka Cipta.

Paket Lintas Barat lainnya senilai Rp 8 miliar, dengan target efektif jalan 5,3 kilometer dengan kontraktor pelaksana PT. Pasific Karya Makmur dan masa pelaksanaan 210 hari kalender.


Untung menuturkan, paket penanganan jalan terakhir sebesar Rp 9 miliar, dengan target efektif jalan 5,066 km, kontraktor pelaksana PT. Harap Panjang, masa pelaksanaan 210 hari kalender, konsultan supervisi PT. Aneka Cipta.



Sementara pembangunan jembatannya sendiri ada enam jembatan, sampai saat ini yang sudah selesai dan sudah diresmikan oleh Presiden pada Pebruari lalu ialah jembatan Gesek sepajang 60 meter. Sementara itu untuk tahun 2009 sasarannya untuk pembangunan lima jembatan yang belum terselesaikan yaitu jembatan Busung sepanjang 260 m yang kondisi saat ini telah mencapai 80 persen dan diharapkan 2009 dapat diselesaikan.


Jembatan lainnya seperti jembatan Ekang dengan panjang 170 m, pekerjaan saat ini adalah pelaksanaan tahap kedua yaitu penyelesaian pembangunan bawah, kemudian untuk jembatan Anculai sepanjang 290 m, pekerjaannya baru tahap kesatu yaitu pelaksanaan pemancangan abautment dan pilar.


Selain itu ada juga jembatan Sei Bintan ini juga tahap pertama sepanjang 120 m , kemudian ada jembatan Kang Boy, dimana jembatan ini merupakan jembatan terpanjang pada jalan lintas barat ini yaitu 360 m dan pekerjaan saat ini pelaksanaan tahap kedua yaitu pembangunan bangunan bawah.


Diharapkan dengan selesai dibangunnya jalan lintas barat Pulau Bintan ini, dapat mempersingkat jarak waktu tempuh antara Tanjungpinang menuju ke Tanjunguban dimana melalui jalan lama yang jaraknya 90 km dengan waktu tempuh antara 1,5– 2 jam sedangkan jalan lintas barat ini dengan jarak yang lebih pendek yaitu sepanjang 45 km dan dapat ditempuh dalam waktu 45 menit.


Untung menjelaskan, lintas tersebut juga membuka daerah yang terisolir sehingga menunjang adanya kawasan perdagangan bebas yang dicanangkan oleh pemerintah disamping itu untuk mendukung pengembangan pusat kegiatan wilayah baru, yaitu kawasan Agropolitan Tuapaya dan kawasan Pariwisata Kualasimpang. (humas bina marga/slamet) (http://www.pu.go.id/)

PROGRAM PENGEMBANGAN INFRASTRUKTUR PU LEBIH BERBASIS PENATAAN RUANG

Tingkat kesesuaian program pengembangan infrastruktur Pekerjaan Umum (PU) (Sumber Daya Air, Jalan, dan Keciptakaryaan) setiap tahunnya telah mulai menjawab perwujudan fungsi sistem perkotaan nasional, meliputi, sistem jaringan jalan, sistem sumberdaya air, kawasan lindung, kawasan budidaya andalan, atau kawasan strategis nasional yang ditetapkan dalam Rencana Tata Ruang Wilayah Nasional (RTRWN).

Hal disampaikan Direktur Jenderal Penataan Ruang Departemen PU Imam Ernawi di Jakarta, Selasa (14/4).

Menurut Imam, perwujudan keterpaduan program pengembangan infrastruktur PU berbasis RTRWN tersebut menghadapi tantangan, diantaranya adalah tingkat konsistensi kesesuaian program/kegiatan dengan lokasi/anggaran.

Hal ini diperlihatkan dengan adanya kegiatan pengembangan infrastruktur PU yang telah sesuai dengan indikasi program utama RTRWN, namun belum sepenuhnya sesuai lokasi dan alokasi anggarannya, misalnya terdapat pada sebagian kegiatan pembangunan infrastruktur jalan dan SDA.

Tantangan lain menurut Imam, khusus untuk infrastruktur keciptakaryaan, disadari, fungsi infrastruktur di bidang ini masih lebih dominan pada pelayanan kebutuhan dasar (basic needs), sehingga gambaran kesesuaian program/kegiatan yang cukup besar, namun tidak seluruhnya berada pada lokasi/kawasan/kota yang diarahkan dalam perwujudan pemanfaatan ruang nasional.

Lebih lanjut Dirjen Penataan Ruang mengatakan, evaluasi ini dilakukan terhadap kesesuaian program-program Departemen PU hasil Konsultasi Regional (Konreg) 2008 di Mataram beberapa waktu lalu. Perwujudan Pemanfaatan Ruang Wilayah Nasional yang diharapkan, meliputi Kesesuaian program/kegiatan, yaitu persentase program/kegiatan pengembangan infrastruktur yang sesuai dengan Indikasi Program Utama-RTRWN.

Selain itu kesesuaian lokasi program/kegiatan, yaitu persentase lokasi program/kegiatan pengembangan infrastruktur yang sesuai dengan arahan spasial pengembangan wilayah sungai, sistem jalan, sistem perkotaan, dan sentra produksi di kawasan andalan yang harus didukung fungsinya dalam RTRWN.

Harapan lain adalah alokasi anggaran, yaitu persentase besarnya nilai anggaran yang teralokasi untuk program pengembangan infrastruktur yang sesuai dengan RTRWN.

Sedangkan hasil evaluasi kesesuaian program, lokasi, dan alokasi anggaran pada masing-masing infrastruktur PU tersebut, menurut Imam Ernawi, untuk program pengembangan infrastruktur SDA, kesesuaian program/kegiatan dengan Indikasi Program Utama-RTRWN telah mencapai 91,2 persen, walaupun kesesuaian lokasi pengembangannya baru mencapai 74,7 persen, dan alokasi anggarannya sebesar 84,5 persen.

Sedangkan untuk program pengembangan infrastruktur jalan, kesesuaian program/kegiatan dengan Indikasi Program Utama-RTRWN telah mencapai 95,8 persen, walaupun kesesuaian lokasinya baru mencapai 76,8 persen, dan alokasi anggarannya sebesar 83,2 persen.

Selain itu untuk program pengembangan infrastruktur keciptakaryaan, kesesuaian program/kegiatan dengan Indikasi Program Utama-RTRWN mencapai 76,5 persen, namun kesesuaian lokasinya masih 33,7 persen, dan alokasi anggarannya 28,5 persen.

Evaluasi pelaksanaan pemograman pengembangan infrastruktur PU berbasis penataan ruang akan dilakukan rutin tiap tahun oleh Ditjen Penataan Ruang, dan sebagai tindak lanjutnya saat ini juga sedang disiapkan Rencana Terpadu Pengembangan Infrastruktur Ke-PU-An Jangka Menengah Berbasis RTRWN, yang diharapkan akan menjadi pedoman/acuan evaluasi perencanaan program infrastruktur ke-PU-an berbasis penataan ruang (RTRWN) selama 5 tahun, ungkap Imam Ernawi (Humas Dirjen Taru).

Pusat Komunikasi Publik

160409

RUU Pengadilan Tipikor

Liputan 6 - Jumat, April 17

Liputan6.com, Jakarta: Ketua Panitia Khusus Rancangan Undang-undang Pengadilan Tindak Pidana Korupsi (Tipikor), Dewi Asmara, optimistis RUU tersebut dapat diselesaikan sebelum masa tugas DPR 2004-2009 berakhir pada September 2009. "Mulai minggu depan, kita akan kembali rapat pimpinan sehingga bisa segera dilanjutkan pembahasan RUU ini," kata dia, Kamis (16/4).

Dewi mengemukakan, pembahasan RUU itu termasuk dalam salah satu dari sekian RUU yang harus diselesaikan periode saat ini. Pembahasan RUU akan dilakukan secara komprehensif dan tidak sekadar mengubah kata-kata sehingga bisa segera diaplikasikan.

Ia mengatakan, salah satu substansi pembahasan yang rumit antara lain keberadaan hakim di pengadilan itu. "Misalnya hakim karier. Bagaimana jenjang mereka serta renumerasi yang berlaku nantinya dan masalah pemeriksaan pendahuluan kasus korupsi," kata Dewi.

Menurut Dewi, keberadaan pengadilan tersebut tidak mungkin berada di setiap pengadilan negeri dan hanya ada tingkat provinsi. Hal tersebut karena pertimbangan keuangan negara yang tersedia. Lebih jauh ia mengatakan, pembahasan RUU juga disingkronkan dengan sejumlah UU lainnya, seperti UU Tipikor.(YNI/ANTARA)

Jumat, 10 April 2009

Pemilu Legislatif

Kemarin kita sebagai anak bangsa melaksanakan tugas dan panggilan untuk menentukan arah kedepan negrri tercinta ini dengan melaksanakan pemilihan umum legislatif untuk calon anggota DPD, DPRI, DPR Provinsi dan DPR Kota/Kabupaten. Secara umum pelaksanaan pemilu legislatif berjalan dengan baik. Namun masih ada kekurangan, terutama dalam DPT, banyak penduduk yang tidak terdaftar dalam DPT, sehingga tidak dapat menunaikan hak ,tugasnya dan panggilan negara dalam berpartisipasi pemilu legislatif tahun 2009 ini.
Semua ini tentu bermula pada saat pendataan dan input data DPT sementara, diharkan untuk pilpres kedepan dapat diperbaiki dan upto date.Sebaiknya untuk data penduduk memakai data 3 bulan terakhir, sehingga dapat lebih valid. Karena mobilitas penduduk yang sangat dinamis, diharapkan data 3 bulan terakhir dapat lebih menjamin validasi data.

Selamat buat pak SBY dan Partai Demokrat dan partai lain peserta pemilu, kiranya kita semua lebih dewasa dalam berpolitik dan tidak menggunakan cara-cara yang kurang terpuji, karena semuanya akan menjadi cermin dalam tindak tanduk caleg tersebut apabila sudah duduk dalam dewan. Hal ini tentunya akan mengecewakan konstituen yang sudah memilih dan memb erikan kepercayaan untuk mengawal aspirasi masyarakat/konstituen dalam melaksanakan pembangunan negara ini menuju masyarakat adil dan makmur sesuai cita-cita proklamasi dan pembukaan UUD 1945.

Terima kasih pak SBY, kami tunggu dalam pilpres mendatang.
Damailah negriku, sejahterahlah bangsaku, jayalah Indonesia...................bravo

Selasa, 31 Maret 2009

PENYELESAIAN RTRW KABUPATEN/KOTA PERLU DIPERCEPAT

Pemerintah Daerah Provinsi/Kabupaten/Kota didorong untuk segera menyelesaikan Rencana Tata Ruang Wilayah (RTRW)-nya. Penyelesaian ini dimaksudkan untuk memenuhi amanat UU 26 tahun 2007 tentang Penataan Ruang, yakni Perda RTRW Provinsi harus sudah selesai tahun 2009 dan Perda RTRW Kabupaten dan RTRW Kota harus sudah selesai seluruhnya tahun 2010.

“Penyelesaian RTRW Kabupaten/Kota perlu dipercepat.” kata Imam S. Ernawi, Direktur Jenderal Penataan Ruang saat membuka Rapat Koordinasi Pelaksanaan Kegiatan Tahun 2009 dan Persiapan Penyusunan Program dan Kegiatan Tahun 2010 Satuan Kerja Perangkat Daerah (SKPD) Dekonsentrasi Bidang Penataan Ruang di Hotel Millenium, Jakarta, Senin (23/3).

Menurutnya hingga kini baru sekitar 8% Pemerintah Kabupaten dan 13% Pemerintah Kota yang RTRW-nya telah telah selesai maupun dalam proses persetujuan DPRD untuk disahkan menjadi Perda. 58% masih dalam tahapan proses revisi RTRW. Sementara sisanya sama sekali masih belum melakukan penyesuaian Perda RTRW-nya dengan UU Penataan Ruang No 26 Tahun 2007.

Penyelesaian RTRW juga mempunyai peran penting dalam menentukan arah pembagunan daerah. Dalam UU no 25 tahun 2004 tentang Sistem Perencanaan Pembangunan Nasional ditegaskan, penyusunan Rencana Pembangunan Jangka Menengah (RPJM) dan Rencana Pembangunan Jangka Panjang (RPJP) yang disusun pemerintah daerah harus mengacu pada RTRW.

Dengan kata lain, RTRW adalah sebagai basis pembangunan sektor. Bila Perda RTRW yang ada belum disesuaikan dengan undang-undang penataan ruang yang baru, pemerintah daerah akan kesulitan untuk menetapkan acuan spasial pembangunan daerah. Ini merupakan tantangan yang cukup berat bagi Direktorat Jenderal Penataan Ruang.

Untuk menjawab tantangan tersebut, SKPD Penataan Ruang merupakan organisasi tata ruang di daerah yang terus dimantapkan karena mempunyai peran penting, sebagai unit yang diandalkan di masing-masing daerah. Keberadaan SKPD diharapkan dapat meningkatkan kapasitas (sumberdaya manusia – red) Pemerintah Daerah dalam upaya mencapai target penyelesaian RTRW Provinsi, Kabupaten, dan Kota. Melalui rakor ini diharapkan dapat menjaring inovasi dan improvisasi program guna menjawab tantangan Direktorat Jenderal Penataan Ruang.

PERKEMBANGAN KOTA TIDAK TERKONTROL AKIBAT PELANGGARAN TATA RUANG

Ikatan Ahli Perencanaan Indonesia (IAP) menyarankan perlunya proses evaluasi terhadap produk Rencana Tata Ruang dan implementasinya di seluruh kawasan rawan bencana di perkotaan. Rencana dan peraturan zonasi untuk setiap kawasan harus menjadi instrumen perencanaan dan pengendalian tata ruang kawasan situ.

Sekretaris Jenderal (Sekjen) IAP Bernadus Djonoputro di Jakarta, Selasa (31/3) siang menyatakan, bencana jebolnya tanggul Situ Gintung merupakan akibat dari fenomena perkembangan kota yang tidak terkontrol yang diakibatkan antara lain pelanggaran terhadap proses dan produk rencana tata ruang.

“Harus ada penegakan hukum yang tegas bagi setiap pelanggaran terhadap rencana tata ruang sesuai dengan aturan dan sanksi yang telah ditetapkan dalam UU No. 26 Tahun 2006 tentang Penataan Ruang,” sebut Bernadus.(http://www.pu.go.id/)

Minggu, 29 Maret 2009

DATA MINING

Data Mining (DM) adalah salah satu bidang yang berkembang pesat karena besarnya kebutuhan akan nilai tambah dari database skala besar yang makin banyak terakumulasi sejalan dengan pertumbuhan teknologi informasi. Definisi umum dari DM itu sendiri adalah serangkaian proses untuk menggali nilai tambah berupa pengetahuan yang selama ini tidak diketahui secara manual dari suatu kumpulan data.

Data Mining memang salah satu cabang ilmu komputer yang relatif baru. Dan sampai sekarang orang masih memperdebatkan untuk menempatkan data mining di bidang ilmu mana, karena data mining menyangkut database, kecerdasan buatan (artificial intelligence), statistik, dsb. Ada pihak yang berpendapat bahwa data mining tidak lebih dari machine learning atau analisa statistik yang berjalan di atas database. Namun pihak lain berpendapat bahwa database berperanan penting di data mining karena data mining mengakses data yang ukurannya besar (bisa sampai terabyte) dan disini terlihat peran penting database terutama dalam optimisasi query-nya. Data Mining juga dikenal dengan nama Knowledge Discovery in Databases (KDD).

1. Latar Belakang
Tahun 1990-an telah melahirkan “gunungan” data di bidang ilmu pengetahuan, bisnis dan pemerintah. Kemampuan teknologi informasi untuk mengumpulkan dan menyimpan berbagai tipe data jauh meninggalkan kemampuan untuk menganalisis, meringkas dan mengekstraksi “pengetahuan” dari data.
Metodologi tradisional untuk menganalisis data yang ada, tidak dapat menangani data dalam jumlah besar. Sementara para pelaku bisnis memiliki kebutuhan-kebutuhan untuk memanfaatkan gudang data yang sudah dimiliki, para peneliti melihat peluang untuk melahirkan sebuah teknologi baru yang menjawab kebutuhan ini, yaitu Data Mining. Teknologi ini sekarang sudah ada dan diaplikasikan oleh perusahaan-perusahaan untuk memecahkan berbagai permasalahan bisnis.

Disamping itu para pelaku bisnis membutuhkan pemecahan masalah bisnis dengan memanfaatkan data yang ada.
Permasalahan bisnis yang umum dihadapi adalah :
a. Bagaimana menyajikan advertensi kepada target yang tepat sasaran
b. Menyajikan halaman web yg khusus setiap pelanggan
c. Menampilkan informasi produk lain yang biasa dibeli bersamaan dengan produk tertentu.
d. Mengklasifikasikan artikel-artikel secara otomatis
e. Mengelompokkan pengunjung web yang memiliki kesamaan karateristik tertentu
f. Mengestimasi data yang hilang
g. Memprediksi kelakuan di masa yang akan datang

Ketersediaan data yang melimpah, kebutuhan akan informasi (atau pengetahuan) sebagai pendukung pengambilan keputusan untuk membuat solusi bisnis, dan dukungan infrastruktur di bidang teknologi informasi merupakan cikal-bakal dari lahirnya teknologi data mining.

2. Tujuan dari Data Mining
Disamping permasalahan bisnis yang diuraikan diatas, kebutuhan bisnis juga menjadi salah satu tujuan Data Mining mengapa data mining digunakan.
Terdapat tiga kebutuhan bisnis :
- Penambahan maupun peningkatan kapasitas produk
- Pengurangan biaya operasi perusahaan
- Peningkatan efektifitas pemasaran dan keuntungan

Dengan tujuan tersebut, Konsep dasar yang bagi pelaku bisnis sebagai solusi permasalahan dapat diuraikan untuk tujuan, yaitu :
a. Perumusan Target
Memilih target pemasaran untuk disuguhi advertensi tertentu bertujuanuntuk meningkatkan profit perusahaan, pengenalan produk secara luas atauhasil-hasil terukur lainnya.
b. Personalisasi
Memanfaatkan personalisasi untuk memilih advertensi yang paling sesuaiuntuk orang tertentu dan personalisasi ini bertujuan agar pengunjung yang sudah menjadi pelanggan membeli sebanyak mungkin produk perusahaan.
c. Asosiasi (analisis keranjang pasar)
Asosiasi ini mengidentifikasi item-item produk yang mungkin dibeli bersamaan dengan produk lain atau dilihat secara bersamaan pada saatmencari informasi mengenai produk tertentu.
d. Manajemen Pengetahuan
Sistem ini mengidentifikasi dan memanfaatkan pola-pola di dalam dokumen yang berbahasa alami atau berformat text. Pendekatan ini digunakan untuk menyortir dokumen baru dan mempersonalisasi publikasi online
e. Pengelompokkan
Pengelompokkan digunakan untuk membuat laporan mengenai karateristik umum dari grup-grup pengunjung (kustomer) yang berbeda.
f. Estimasi dan Prediksi
Estimasi menerka sebuah nilai yang belum diketahui dan prediksimemperkirakan nilai untuk masa datang.
g. Pohon Keputusan
Sebagai diagram alir dari titik-titik pertanyaan yang menuju pada sebuah keputusan.

3. Manfaat Data Mining
Ketersediaan data transaksi dalam volume yang besar: Bidang-bidang industri yang memiliki data transaksi dalam volume besar ini misalnya jaringan ritel, telekomunikasi, perbankan, kartu kredit dan lain-lain. Sistem manajemen transaksi pada industri tersebut merekord informasi-informasi rinci yang diperlukan dalam bisnis mereka.
Informasi sebagai aset perusahaan yang penting: Kebutuhan terhadap informasi telah melahirkan gudang data yang mengintegrasikan informasi dari sistem-sistem yang tersebar untuk mendukung pengambilan keputusan. Seringkali gudang data ini juga dilengkapi dengan data demografis kustomer dan informasi mengenai rumah-tangga.

Ketersediaan teknologi informasi dalam skala yang terjangkau: Saat ini teknologi informasi berbasis sistem yang terbuka sudah dapat diadopsi secara luas. Ini termasuk sistem manajemen basis data, kakas penganalisis, dan yang terkini adalah pertukaran informasi dan publikasi melalui jaringan Intranet.
Faktor-faktor tersebut di atas dikombinasikan dengan konsep solusi bisnis yang telah diuraikan sebelumnya, telah melahirkan teknologi data mining. Data mining dimaksudkan untuk memberikan solusi nyata bagi para pengambil keputusan di dunia bisnis, untuk mengembangkan bisnis mereka.
Data mining biasa digunakan dalam industri ritel untuk melakukan prediksi penjualan. Data mining mampu membantu ritel dalam mengambil keputusan persediaan. Misalnya, ketika pelanggan pembeli suatu barang, maka kapan mereka akan kembali lagi? Atau kapan mereka akan membeli barang komplementernya? Penggunaan data mining juga membantu dalam menganalisa kira-kira barang apa saja yang dibeli pelanggan secara bersamaan. Mengapa ini penting? Karena pertama, analisa ini bisa membantu ritel dalam menentukan keputusan persediaan. Seandainya pelanggan biasa membeli barang A dan B secara bersamaan, maka ritel setidaknya harus menyediakan kedua barang tersebut dalam jumlah yang sama.
Selain itu, analisa melalui data mining juga membantu dalam menentukan kapan ritel mengalami peak day atau kunjungan terramai dalam suatu periode. Untuk peak day tersebut, tentunya ritel harus menyediakan persediaan yang lebih banyak dibandingkan dengan hari-hari biasanya.

Kedua, analisa tersebut juga penting dalam membantu ritel untuk menyusun layout toko sebaik mungkin dan sesuai kebutuhan pelanggan. Misalnya, pelanggan pada umumnya selain membeli keperluan mandi, juga sering kali membeli keperluan rumah tangga lainnya secara bersamaan. Sehingga, efeknya pada layout toko adalah letak keperluan mandi tidak akan jauh dari keperluan rumah tangga lainnya seperti deterjen ataupun pembersih lantai. Dengan menempatkan layout toko sesuai dengan pola perilaku pelanggan, maka tentunya ini akan meningkatkan tingkat kenyamanan pelanggan yang berbelanja pada ritel tersebut. Data mining juga bisa bermanfaat dalam membantu ritel melakukan marketing mix. Misalnya melalui analisa data mining ditemukan, bahwa pada akhir pekan pelanggan biasanya membeli barang A dan B secara bersamaan. Sehingga, ritel bisa memastikan bahwa pada hari tersebut, barang A dan B dijual dengan harga penuh, dan ditaruh pada display terdepan. Sehingga langkah-langkah ini diharapkan bisa mengoptimalkan penjualan kedua barang tersebut. Strategi customization tentunya sangat mengandalkan data mining. Blockbuster Entertainment, misalnya, memanfaatkan catatan database rental untuk memberikan rekomendasi kepada masing-masing pelanggan. Selain itu, American Express juga menawarkan serangkaian produk-produk kepada pemegang kartu kreditnya berdasarkan analisa dari pengeluaran bulanan mereka. Contoh perusahaan yang merintis penggunaan data mining dan mengubah hubungan dengan supplier adalah WalMart. Dulu sekali, WalMart mencatat transaksi yang berada pada 2,900 tokonya di 6 negara dan mengirimkan data ini ke gudang data sebesar 7.5 terabyte. Saat itu WalMart mengizinkan lebih dari 3,500 supplier untuk mengakses data-data dan menganalisanya. Supplier ini memanfaatkan data tersebut untuk mengidentifikasi perilaku pembelian di toko. Selain itu, data tersebut juga rupanya bermanfaat dalam mengelola persediaan dan mengidentifikasi peluang merchandise baru

4. Keterkaitan Data Mining dengan cabang ilmu yang lain
Ilmu Berkaitan Data Mining :
a. Database
b. Information science (ilmu informasi)
c. High performance computing
d. Visualisasi
e. Machine learning
f. Statistik
g. Neural networks (jaringan saraf tiruan)
h. Pemodelan matematika
i. Information retrieval
j. Information extraction dan
k. Pengenalan pola

5. Impementasi Data Mining
a. Analisa Pasar dan Manajemen
Untuk analisa pasar, banyak sekali sumber data yang dapat digunakan seperti transaksi kartu kredit, kartu anggota club tertentu, kupon diskon, keluhan pembeli, ditambah dengan studi tentang gaya hidup publik.
Beberapa solusi yang bisa diselesaikan dengan data mining diantaranya:

Menembak target pasar
Data mining dapat melakukan pengelompokan (clustering) dari model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli sesuai dengan karakteristik yang diinginkan seperti kesukaan yang sama, tingkat penghasilan yang sama, kebiasaan membeli dan karakteristik lainnya.

Melihat pola beli pemakai dari waktu ke waktu
Data mining dapat digunakan untuk melihat pola beli seseorang dari waktu ke waktu. Sebagai contoh, ketika seseorang menikah bisa saja dia kemudian memutuskan pindah dari single account ke joint account (rekening bersama) dan kemudian setelah itu pola beli-nya berbeda dengan ketika dia masih bujangan.

Cross-Market Analysis
Kita dapat memanfaatkan data mining untuk melihat hubungan antara penjualan satu produk
dengan produk lainnya. Berikut ini disajikan beberapa contoh:
- Cari pola penjualan Coca Cola sedemikian rupa sehingga kita dapat mengetahui
- barang apa sajakah yang harus kita sediakan untuk meningkatkan penjualan Coca Cola?
- Cari pola penjualan IndoMie sedemikian rupa sehingga kita dapat mengetahui barang apa saja yang juga dibeli oleh pembeli IndoMie. Dengan demikian kita bisa mengetahui dampak jika kita tidak lagi menjual IndoMie.
- Cari pola penjualan

Profil Customer
Data mining dapat membantu Anda untuk melihat profil customer/pembeli/nasabah sehingga kita dapat mengetahui kelompok customer tertentu suka membeli produk apa saja.

Identifikasi Kebutuhan Customer
Anda dapat mengidentifikasi produk-produk apa saja yang terbaik untuk tiap kelompok customer dan menyusun faktor-faktor apa saja yang kira-kira dapat menarik customer baru untuk bergabung/membeli.

Menilai Loyalitas Customer
VISA International Spanyol menggunakan data mining untuk melihat kesuksesan program-program customer loyalty mereka. Anda bisa lihat di
www.visa.es/ingles/info/300300.html

Informasi Summary
Anda juga dapat memanfaatkan data mining untuk membuat laporan summary yang bersifat multi-dimensi dan dilengkapi dengan informasi statistik lainnya.

b. Analisa Perusahaan dan Manajemen Resiko
Perencanaan Keuangan dan Evaluasi Aset
Data Mining dapat membantu Anda untuk melakukan analisis dan prediksi cash flow serta melakukan contingent claim analysis untuk mengevaluasi aset. Selain itu Anda juga dapat menggunakannya untuk analisis trend.

Perencanaan Sumber Daya (Resource Planning)
Dengan melihat informasi ringkas (summary) serta pola pembelanjaan dan pemasukan dari masing-masing resource, Anda dapat memanfaatkannya untuk melakukan resource planning.

Persaingan (Competition)
- Sekarang ini banyak perusahaan yang berupaya untuk dapat melakukan competitive intelligence. Data Mining dapat membantu Anda untuk memonitor pesaing-pesaing Anda dan melihat market direction mereka.
- Anda juga dapat melakukan pengelompokan customer Anda dan memberikan variasi harga/layanan/bonus untuk masing-masing grup.
- Menyusun strategi penetapan harga di pasar yang sangat kompetitif. Hal ini diterapkan oleh perusahaan minyak REPSOL di Spanyol dalam menetapkan harga jual gas di pasaran.

c. Telekomunikasi
Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual (dilayani oleh orang). Tujuannya tidak lain adalah untuk menambah layanan otomatis khusus untuk transaksi-transaksi yang masih dilayani secara manual. Dengan demikian jumlah operator penerima transaksi manual tetap bisa ditekan minimal.

d. Keuangan
Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk menambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan ( seperti money laundry ). Mereka menyatakan bahwa hal tersebut akan susah dilakukan jika menggunakan analisis standar. Perihal ini dapat di lihat pada situs resmi yang menginformasikan
www.senate.gov/~appropriations/treasury/testimony/sloan.htm. Mungkin sudah saatnya juga Badan Pemeriksa Keuangan Republik Indonesia menggunakan teknologi ini untuk mendeteksi aliran dana BLBI.

e. Asuransi
Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi.
Hasilnya? Mereka berhasil menghemat satu juta dollar per tahunnya. Untuk informasi lebih lanjut dan akurat dapat di lihat
www.informationtimes.com.au/data-sum.htm.
Tentu saja ini tidak hanya bisa diterapkan untuk asuransi kesehatan, tetapi juga untuk berbagai jenis asuransi lainnya.

f. Olah Raga
IBM Advanced Scout menggunakan data mining untuk menganalisis statistik permainan NBA (jumlah shots blocked, assists dan fouls) dalam rangka mencapai keunggulan bersaing (competitive advantage) untuk tim New York Knicks dan Miami Heat.

g.Astronomi
Jet Propulsion Laboratory (JPL) di Pasadena, California dan Palomar Observatory berhasil menemukan 22 quasar dengan bantuan data mining. Hal ini merupakan salah satu kesuksesan penerapan data mining di bidang astronomi dan ilmu ruang angkasa. Anda bisa lihat di
www-aig.jpl.nasa.gov/public/mls/news/SKICAT-PR12-95.html.

h.Internet Web Surf-Aid
IBM Surf-Aid menggunakan algoritma data mining untuk mendata akses halaman Web khususnya yang berkaitan dengan pemasaran guna melihat prilaku dan minat customer serta melihat ke-efektif-an pemasaran melalui Web.

Dengan melihat beberapa aplikasi yang telah disebutkan di atas, terlihat sekali potensi besar dari penerapan Data Mining di berbagai bidang. Bahkan beberapa pihak berani menyatakan bahwa Data Mining merupakan salah satu aktifitas di bidang perangkat lunak yang dapat memberikan ROI (return on investment) yang tinggi. Namun demikian, perlu diingat bahwa Data Mining hanya melihat keteraturan atau pola dari sejarah, tetapi tetap saja sejarah tidak sama dengan masa datang.
Contoh: jika orang terlalu banyak minum Coca Cola bukan berarti dia pasti akan kegemukan, jika orang terlalu banyak merokok bukan berarti dia pasti akan kena kanker paru-paru atau mati muda. Bagaimanapun juga data mining tetaplah hanya alat bantu yang dapat membantu manusia untuk melihat pola, menganalisis trend dansebagainya dalam rangka mempercepat pembuatan keputusan.

6. OLAP (Online Analitical Processing)
OLAP adalah suatu sistem atau teknologi yang dirancang untuk mendukung proses analisis kompleks dalam rangka mengungkapkankecenderungan pasar dan faktor-faktor penting dalam bisnis.
OLAP ditandai dengan kemampuannya menaikkan atau menurunkan
dimensi data sehingga kita dapat menggali data sampai pada level yang sangat detail dan memperoleh pandangan yang lebih luas mengenai objek yang sedang kita analisis.
OLAP secara khusus memfokuskan pada pembuatan data agar dapat diakses pada saat pendefinisian kembali dimensi.
OLAP dapat digunakan membuat rangkuman dari multidimensi data
yang berbeda, rangkuman baru dan mendapatkan respon secara online, dan memberikan view dua dimensi pada data cube multidimensi secara interaktif.

Kemampuan OLAP
Konsolidasi melibatkan pengelompokan data.
Sebagai contoh kantor-kantor cabang dapat dikelompokkan menurut kota atau bahkan propinsi. Transaksi penjualan dapat ditinjau menurut tahun, triwulan, bulan, dan sebagainya. Kadangkala istilah rollup digunakan untuk menyatakan konsolidasi.

Drill-down adalah suatu bentuk yang merupakan kebalikan dari konsolidasi, yang memungkinkan data yang ringkas dijabarkan menjadi data yang lebih detail.

Slicing and dicing (atau dikenal dengan istilah pivoting) menjabarkan pada kemampuan untuk melihat data dari berbagai sudut pandang

Software OLAP
Express Server (Oracle)
PowerPlay (Cognos Software)
Metacube (Informix/Stanford Technology Group)
HighGate Project (Sybase)

7. Data Warehousing
Data Warehouse adalah Pusat repositori informasi yang mampu memberikan database berorientasi subyek untuk informasi yang bersifat historis yang mendukung DSS (Decision Suport System) dan EIS (Executive Information System).
Salinan dari transaksi data yang terstruktur secara spesifik pada query dan analisa. Salinan dari transaksi data yang terstruktur spesifik untuk query dan laporan..
Tujuan Meningkatkan kualitas dan akurasi informasi bisnis danmengirimkan informasi ke pemakai dalam bentuk yang dimengerti dan dapat diakses dengan mudah.

Ciri-ciri Data Warehouse
Terdapat 4 karateristik data warehouse

a. Subject oriented
– Data yang disusun menurut subyek berisi hanya informasi yang penting bagi pemprosesan decision support.
– Database yang semua informasi yang tersimpan di kelompokkan berdasarkan subyek tertentu misalnya: pelanggan, gudang, pasar, dsb.
– Semua Informasi tersebut disimpan dalam suatu sistem data warehouse.
– Data-data di setiap subyek dirangkum ke dalam dimensi, misalnya : periode waktu, produk, wilayah, sehingga dapat memberikan nilai sejarah untuk bahan analisa.

b. IIntegrated
– Jika data terletak pada berbagai aplikasi yang terpisah dalam suatu lingkungan operasional, encoding data sering tidak seragam sehinggga bila data dipindahkan ke data warehouse maka coding akan diasumsikan sama seperti lazimnya.

c. Time-variant
– Data warehouse adalah tempat untuk storing data selama 5 sampai 10 tahun atau lebih, data digunakan untuk perbandingan atau perkiraan dan data ini tidak dapat diperbaharui.

d. Non volatile
– Data tidak dapat diperbaharui atau dirubah tetapi hanya dapat ditambah dan dilihat.

Masalah-masalah dalam menerapkan Data warehouse :
Dokumentasi dan pengelolaan metadata dari data warehouse.
Penentuan aturan dalam proses transformasi untuk memetakan berbagai sumber legacy data yang akan dimasukkan ke dalam data warehouse.
Pencapaian proses pengembangan yang handal, baik dalam membangun, mempimplementasikan, maupun memelihara data warehouse.

8. Arsitektur Data Mining

Arsitektur : Sistem Data Mining



Keterangan :

a. Data cleaning (Pembersihan Data) : untuk membuang data yang tidak konsisten dan noise)
b. Data integration : penggabungan data dari beberapa sumber
c. Data Mining Engine : Mentranformasikan data menjadi bentuk yang sesuai untuk di mining
d. Pattern evaluation : untuk menemukan yang bernilai melalui knowledge base
e. Graphical User Interface (GUI) : untuk end user. Semua tahap bersifat interaktif di mana user terlibat langsung atau dengan perantaraan knowledge base

9. Model Data Mining
a. Prediction Methods
Menggunakan beberapa variabel untuk memprediksi sesuatu atau suatu nilai yang akan datang.
b. Description Methods
Mendapatkan pola penafsiran (humaninterpretable patterns) untuk menjelaskan data.

10. Contoh Aplikasi Data Mining

Data Mining adalah suatu aplikasi terbaru yang berbeda dan lebih luas. Masih adanya perbedaan pendapat antara prinsip umum dan pembagian wilayah secara khusus pada aplikasi data mining, khususnya pada keefektifan alat bantu data mining untuk aplikasi tertentu
Beberapa aplikasi domein :
Biomedical dan analisa data DNA
Analisa data keuangan
Industri penjualan eceran
Industri telekomunikasi

a. Biomedical dan analisa data DNA
Urutan DNA: 4 dasar yang membangun blok ( nucleotides): adenine ( A), cytosine ( C), guanine ( G), dan thymine ( T)
Gen: suatu urutan dari beratus-ratus individu nucleotides yang diatur secara tertentu
Manusia mempunyai sekitar 30,000 gen
Hal yang paling luar biasa yaitu jumlah jalan yang terdapat pada nucleotides sehingga dapat dipecah dan diurutkan kembali untuk membentuk gen yang terpisah
Pengintegrasian pembagian heterogen yang semantik, dalam genome database
§ Sekarang: terbagi-bagi, Generasi yang tak terkendali dan penggunaan data DNA secara luas
§ Metoda pembersihan dan pengintegrasian data yang dikembangkan dalam Data Mining akan sangat membantu

Contoh analisa data DNA
Pencarian persamaan dan perbandingan antar urutan DNA
§ Perbandingan sering terjadi pada pola tiap kelas ( sebagai contoh, sehat dan sakit)
§ Mengidentifikasi urutan pola gen yang berperan dalam berbagai penyakit

Analisa asosiasi: identifikasi dari co-occurring urutan gen
§ Kebanyakan penyakit tidaklah dicetuskan oleh gen tunggal tetapi oleh suatu kombinasi gen yang bertindak bersama-sama
§ Analisa asosiasi dapat membantu menentukan macam gen yang mungkin terjadi bersama-sama dalam target percontohan

Analisa alur: menghubungkan gen pada masa pengembangan penyakit lain
§ Gen yang berbeda bisa menjadi aktip pada penyakit yang berbeda
§ Intervensi pada masa perkembang farmasi yang mentargetkan langkah-langkah yang berbeda secara terpisah

Penggambaran alat bantu dan analisa data genetik

b. Analisa data keuangan
Data keuangan yang dikumpulkan oleh bank dan lembaga keuangan relatif lebih lengkap, dapat dipercaya, dan bermutu tinggi

Disain dan konstruksi dari gudang data untuk multidimensional analisa data dan data mining
§ Gambaran dari hutang perbulan, perdaerah, persektor, dan faktor lain
§ Mengakses informasi statistik seperti maximum, minimum, total, rata-rata, kecenderungannya, dan lain lain

Analisa pembayaran peminjaman kebijakan kredit secara prediksi per pelanggan
§ Seleksi di masa depan dan perlunya penggolongan secara atribut
§ Pencapaian pembayaran peminjaman
§ Nilai kredit konsumen

c. Industri penjualan eceran/retail
Industri Retail: besarnya data penjualan, sejarah belanja pelanggan, dan lain-lain
Aplikasi dari Retail data mining
§ Mengidentifikasi perilaku pembelian pelanggan
§ Menentukan kecenderungan pola belanja pelanggan
§ Meningkatkan mutu dari layanan pelanggan
§ Mencapai kepuasan pelanggan
§ Tingkatkan perbandingan konsumsi barang-barang
§ Mendisain keefektifan distribusi dan transportasi barang

Contoh Data Mining pada Industri Retail
Disain dan konstruksi dari gudang data yang didasarkan keuntungan penggunaan data mining
§ Analisa multidimensional dari penjualan, pelanggan, produk, waktu, dan daerah

Analisa dari efektivitas dari kampanye penjualan
Ingatan pelanggan: Analisa dari kesetiaan pelanggan
§ Menggunakan informasi kartu kesetiaan pelanggan untuk mendaftarkan urutan dari pembelian dari pelanggan tertentu
§ Menggunakan pola mining untuk menyelidiki perubahan dalam konsumsi atau kesetiaan pelanggan
§ Menyarankan penyesuaian penetapan harga dan variasi barang-barang

Referensi pembelian dan perbandingan materi
d. Industri telekomunikasi
Analisa pola kecurangan dan identifikasi pola yang tidak lazim
§ Mengidentifikasi pola para pengguna yang berpotensi curang dan penggunaan yang tidak lazim
§ Mendeteksi usaha kecurangan masukan ke dalam rekening pelanggan
§ Menemukan pola yang tidak biasa memerlukan perhatian khusus

Multidimensional asosiasi dan percontohan pola analisa
§ Temukan pola satu set jasa komunikasi berdasarkan kelompok pelanggan, bulan, dan lain lain
§ Mempromosikan penjualan dari jasa spesifik
§ Meningkatkan ketersediaan dari jasa tertentu pada suatu daerah

Penggunaan alat bantu penggambaran dalam analisa data telekomunikasi

REFERENSI
1. http://www.vibizmanagement.vibizportal.com
2. http://www.remi.staff.gunadarma.ac.id
3. http://www.rizky.prihanto.web.id
4. http://www.wselfi.staff.gunadarma.ac.id
5. http://www.ilmukomputer.com
6. Junal INTEGRAL, vol. 7 no. 1, April 2002
7. Data Mining : PERTEMUAN 1& 2 PENDAHULUAN DAN PROSES KDD

Jumat, 27 Maret 2009

Abrasi Pantai


Liburan ke Pantai Trikora kami melalui jalan Pantai Trikora di Km.47+230 - Km 47+330 , beberapa bagian jalan ada yang sudah terkikis akibat abrasi air laut. Sudah ditangani sementara dengan jalan darurat pada sebelah jalan yang longsor.
Mengingat pentingnya jalan ini sebagai outer ring road di Kabuapten Bintan, mudah-mudahan penanganan jalan dapat lebih cepat, sehingga fungsi jalan sebagai prasarana transportasi darat dapat kembali berfungsi maksimal, sehingga arus barang, jasa dan orang dari ke tempat yang melalaui jalan tersebut kembali normal.
Apalagi potensi pariwisata dan potensi lain sepanjang garis pantai Kawal - Berakit, sangat potensial untuk dikembangkan, disamping industri pariwisata yang sudah ada.
Dalam APBN 2009 , sudah di programkan jalan Gesek-Kawal-Malang Rapat-Lome akan ditangani yang akan dilaksanakan oleh SNVT PJJ provinsi Kepulauan Riau, dan saat ini proses desain sedang dilaksanakan oleh konsultan perencana yang telah ditunjuk oleh SNVT P2JJ Provinsi Kepulauan Riau.
Diharapkan pelaksanaan akan segera dilaksanakan, sehingga jalan kembali dapat berfungsi dengan normal.

Libur...


Refreshing

Hari libur kemaren, kita refresh sejenak ke pantai Trikora......, biasa untuk penyegaran dan sekedar menikmati putihnya pasir pantai, deburan ombak serta berendam didalam air asin laut pantai Trikora yang membentang luas dibatas cakrawala nan indah.


Keistimewaan Pantai Trikora terletak pada hamparan pasir putihnya yang luas dan landai, sehingga pengunjung dapat bermain, berjemur, maupun olahraga seperti sepakbola, lari-lari, jalan santai, dan lain-lain. Di tempat ini, pengunjung juga dapat berenang atau sekedar berendam menikmati terpaan gelombang air laut yang pelan dan jernih. Keindahan alam lainnya tampak pada banyaknya pohon kelapa yang berjajar rapi di sepanjang tepian pantai. Terdapat juga batu-batu besar yang teronggok di tepian hingga menjorok ke laut yang turut menambah suasana indah di Pantai Trikora. Dari atas batu-batu ini, kita dapat duduk-duduk bersantai menikmati deburan ombak yang saling berkejaran atau melihat perahu nelayan yang berlalu-lalang di kejauhan.


Sungguh indah memang anugerah Sang Pencipta, yang menciptakan keindahan tiada taranya, namun sayang memang Pantai Trikora kurang atau mungkin tidak dikelola dengan baik, sehingga kebersihan masih terasa kurang. Apalagi keamanan pengunjung, dapat kita lihat tidak terdapat petugas atau penjaga pantai.


Peluang untuk mengembangkan objek pariwisata Pantai Trikora seharusnya sudah dimulai, disamping mendatangkan pemasukan bagi daerah juga dapat menggerakkan ekonomi kerakyatan, dimana dengan pengelolaan dan penataaan Pantai Trikora secara profesional niscaya akan lebih baik, sehingga dapat menggerakkan ekonomi kerakyatan. Dimana akan tumbuh sentra-sentra pedagang suvenir, makanan dan jajanan, pakaian, penyewaan/rental dan banyak lagi yang mungkin dapat tumbuh dan berkembang.


Hal ini tentunya juga akan berakibat pada penyerapan tenaga kerja dan timbulnya lapangan kerja baru dan peluang usaha, yang pada akhirnya akan bermuara pada peningkatan kesejahteraan masyarakat sekitar.


Semoga mendapat perhatian dari Pemerintah Kabupaten Bintan...

Tentunya kami terus berharap pak..........

PEMILU

Saat kampanye bagi para caleg dan partai telah dilaksanakan, banyak dilaksanakan dengan beragam cara dan kemeriahan yang tentunya tidak kalah menariknya.
Namun disamping hingar-bingarnya kampanye, masih banyak menyisakan ketidak taatan para simpatisan dan peserta kampanye terhadap aturan yang ada.
Ini tercermin dari adanya pelanggaran yang dilakukan pada saat kampanye dilaksanakan......
memang tidak mudah untuk menertibkan para pihak yang berkampanye, disatu sisi, aturan main harus ditegakkan.

Mudah-mudahan dalam pelaksanaan kampanye tahun ini, kita bangsa Indonesia lebih dewasa dalam menyikapi setiap hal, dan tidak saling tuding, karena kemana mau dibawa bangsa ini semua terletak ditangan kita sendiri. Artinya siapapun pemenang Pemilu bukanlah kemenangan suatu golongan, partai atau kaum tertentu. Tetapi lebih kepada kemenangan bangsa ini dalam melaksanakan proses demokrasi dan melanjutkan pembangunan untuk kemajuan bangsa dan negara Indonesia tercinta ini.

semoga, good bless for all us.....

Minggu, 15 Maret 2009

Peduli lingkungan

Saat ini banyak terjadi kerusakan lingkungan hidup, baik biota, tanaman, yang semuanya mengganggu kesimbangan alam.

Hal ini tentunya akan berdampak negatif terhadap seluruh komunitas mahluk hidup dan alam yang ada dimuka bumi. Bahaya laten akan mengancam, baik kekeringan, musnahnya biota tertentu, pencemaran udara/air/tanah , banjir serta naikknya level air muka laut...

Semua ini tanpa kita sadari, setiap orang berpartisipasi dalam merusak lingkungan, tanpa disadari.....memang demikianlah yang sudah terjadi...

Namun hal tersebut tidak dapat kita didiamkan karena akan mempengaruhi kehidupan yang ada dimuka bumi, akan menuju kehancuran cepat atau lambat tanpa disadari...

Oleh karenanya..marilah, mulai detik ini kita perduli pada lingkungan hidup......karena seperti kata-kata orang bijak yang menyebutkan : " bahwa bumi ini bukan milik kita, melainkan adalah warisan dari anak cucu kita"...

Save our Earth........